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Note 

Numerical Differentiation by Spline Functions 

Applied to a Lake Temperature Observation 

Observed data often need to be numerically differentiated. A classical inter- 
polation formula, however, does not always yield a consistent result. For instance: 
numerical differentiation by use of a parabola passing through three consecurive 
points yields different values of the derivatives at a fixed point according to the 
location of the point relative to the parabola. Snyder [6, 71 proposed a method 
for overcoming the ambiguity of the numerical differentiation. A better method 
than Snyder’s is the use of spline functions. 

The superiority of the use of cubic splines for numerical differentiation over 
other methods was “measured,” as reported in [S], by comparing the rates of 
convergence as the increase of subdivision and by computing “goodness” and 
“smoothness” of numerical interpolation defined as extensions of the best inter- 
polation property (Ahlberg et al. [l]) and the smooth interpolation property 
(Greville [3]), respectively, of cubic splines. If minor details could be omitted, 
the result may be described simply as follows: Values of the first derivatives, the 
second derivatives, and the function itself, computed by cubic spline interpolation, 
are slightly better than the corresponding values obtained by the classical quartic 
polynomial interpolation and worse than those obtained by the classical quintic 
polynomial interpolation. 

As an application, the temperature distribution in Post Pond, located 18 km 
north of Hannover, New Hampshire, measured by Parrott and Fleming [5] was 
analyzed to detect how the actual heat transfer differed from the vertical hea< 
conduction. 

To analyze the data, daily averages 6 were evaluated from observed hourly 
-temperatures as functions of depth and time. The cubic splines fitted as functions 
of time were used to compute aO/at and those fitted as functions of depth were 
used to compute a2@/ax2. The residual 

n 
D=!-Z-a~ (2:; 

‘9 
where pi is the coefficient of thermal diffusivity of water, was thus computed, 
squared, and integrated over the depth to define the integral residual R 

R = j- D"dx. (2) 
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The integral residual is a measure of the deviation of the actual heat transfer 
mechanism from the ideal vertical heat condutcion. 

The integral residuals R, computed from December 1, 1968 to April 17, 1969 
are plotted in Fig. 1. The curve is drawn to pass through the middle of the scattered 
points, and is intended to show the tendency of the change of R. 
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FIG. 1. Integral residuals of the temperatures between December 1, 1968 and April 17, 1969. 

The curve reaches a minimum where it remains between February 6 and 
March 18. In this period, as shown later, we may assume that only vertical heat 
condution was the mechanism of heat transfer. The solid straight line in this 
period represents the means of the values of R. The curves extending to the left 
and to the right of the straight line were not calculated but were drawn from 
observation. 

Four mechanisms of heat transfer other than the vertical heat conduction can 
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be assumed: (1) radiation absorption, (2) convection, (3) current of water, and 
(4) horizontal heat flow. When the lake is covered with thick ice, radiation absorp- 
tion in the water ceases. Horizontal heat flow may be disregarded for most of the 
period because, since the lake bottom at the observation site is uniform, -we 
cannot find any cause for the horizontal heat flow, except the horizontal water 
fiow which we believe occurred only immediately before and during the period 
of ice melt. 

The following interpretations, therefore, may be made from Fig. 1: (1) Aithough 
radiation absorption and convection stopped after the freeze-up on December 9, 
their effects remained until February 6, when the flat portion in Fig. 1 began. 
(2) Melting of ice began on April 3, when the clear ice (frozen lake water, not the 
ice formed from snow) was thickest, and ended on April 10. According to Parrotb 
and Fleming [5], the quick melting that took only seven days was a result of the 
inflow of snowmelt. Accepting their interpretation, we ca.n say from Fig. 1 that 
the horizontal flow started on March 19, 15 days before the ice began to melt. 

The factors contributing to the magnitude of R are: (1) deviation of the actual 
heat transfer mechanism from the vertical heat conduction, (2) observational 
errors, and (3) errors caused by spline function fitting. The third error is negligibly 
small as compared with the other two errors, as explained below. 

To evaluate the errors in spline function fitting, two theoretical temperature 
distributions were assumed. One of these was the solution of a Neumann’s problem 
(Carslaw and Jaegar [2]) defined as follows: water at 4°C extends in the region 
0 < x < cc. At time t = 0, the temperature at x = 0 is changed to -2°C a36 
maintained at this value throughout 0 < t < XI. The ice thickness in this problem 
reaches 40.13 cm on t = 77 days and 43.62 cm on t = 91 days. The numerical 
computation on t = 84 days showed a close approximation to the observation 
on April 3, 1969, when the ice thickness was 42 cm? the maximum in this observa- 
tion. 

It was found that the numerical values of i%/L?t agreed surprisingly well with 
the exact values (see Table I), but the numerical values of ii”B/&? did not agree 
so well. The number of consecutive days used for the time differentiation was 
apparently too large, but no attempt was made to decrease the number of consecu- 
tive days. The integral residual thus obtained (see Table I) was negligibly small 
as compared with the residuals caused by observation errors (shown around the 
flat portion in Fig. 1). 

The second theoretical temperature distribution was determined as follows: 
The temperature observation on March 26, 1969, was extended to the in&r&e 
region, - a < x < co, by defining the temperature in the region - co < x < 0.5 m 
by the tangent at x = 0.5 m and the temperature in the region 11.1 m < x < rx) 
by the tangent at 11.1 m, where 0.5 m and 11.1 m are the depths of the top and 
bottom thermocouples used in this computation. The temperature distribution 
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thus defined is fitted by a spline function and called Q!J(x)* Using 4(x) as the initia’! 
condition, the rigorous solution for the infinite region 

qx, t) = &/y, exl? (- “,I”’ > VW @ (5) 

was computed. The integral residual for this case was R = 1.65916 x 10-4, which 
is negligibly small as compared with the residuals in Fig. 1 caused by observational 
errors. 

The effect of observational error on R was estimated by substitutmg error 
obeying a normal distribution 

in place of 0 in (1). This substitution yields practically the same value as the 
substitution of E plus a spline function interpolation fitted to a rigorous solution 
into 0 of (l), because, as stated above, R obtained from a rigorous solution can 
be neglected. 

Given a random number xi of a uniform distribution E of the distribution (4) 
can be computed by Hamming’s (41 formula 

12 

E===5 CC xi - 6.0 
1 

. 
i=l 

The integral residual R computed from E by assuming 5 = 0.03”C yielded the 
distribution of almost the same mean and scattering as those obtained from the 

FIG. 2. Comparison of the scattering of R on various assumptions. 
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temperatures observed between February 6 and March 18, 1969, as shown in 
Fig. 2. For comparison, the value of R obtained by assuming u = 0.05”C is 
shown in Fig. 2. The number of computations of R is almost the same in all three 
cases. 

To test the hypothesis that the empirical R is a stochastic distribution sampled 
from the population of theoretical R computed by assuming o = 0.03, the number 
of theoretical computations was increased almost 10 times. The cumulative curve 
thus obtained, which is shown in Fig. 3 as the thick line, was regarded as the 

100 

60 

A 

FIG. 3. Test of R (horizontal lines on the observation curve show the grouping). 

population. The thin line in Fig. 3 shows the cumulative curve of the empirical R. 
The x”-test was performed, and it was concluded that the hypothesis cannot be 
rejected at the level of probability 0.05. (The x2-test was performed with five 
divisions as shown by the vertical lines in Fig. 3. The x’ thus obtained was 9.486, 
where the theoretical x2 with freedom 4 and at level 0.05 is 9.488.) Therefore, we 
may conclude that daily averages determined from the observations of Parrott 
and Fleming [5] obey the error distribution of u = 0.03”C. 
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